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ABSTRACT 

 One of the key components of Navy Medicine is the Navy Nurse Corps (NC). The 

commitment by the NC to be in sync with the Chief of Naval Operations’ and 

Commandant of the Marine Corps’ operational plans requires the Nurse Corps 

community to allocate subspecialties according to the needs of the Navy with the mindset 

of operational readiness. Under the current system of accession, the NC is meeting its 

targeted end strength (E/S). At the same time, however, the NC suffers from an 

imbalance in the management of its quality, the subspecialties (SSP): critical wartime 

subspecialties are understaffed, while the specialties fulfilling non-operational 

requirements are overstaffed. This accession practice results in an undersupply of critical 

SSPs should a contingency arise. This thesis therefore proposes a Markov model to 

optimize the surge force planning for the NC to maximize the probability that enough 

personnel will be available in critical SSPs to meet operational needs during a 

contingency. This model is designed to forecast future E/S and operational surge forces to 

assess whether they will meet the operational readiness goals from the National Defense 

Strategy. Based on hypothetical target E/S and beginning inventory, the model 

demonstrates reliable forecasting capabilities as it satisfied all three assumptions required 

to build a Markov model, demonstrating an almost identical behavior both by the fixed 

inventory accession and by the steady state method. 
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1 

I. INTRODUCTION AND SIGNIFICANCE OF STUDY 

Navy Medicine is committed to providing preventative care to its beneficiaries and 

to caring for its injured sailors and marines, “from the point of injury on the battlefield to 

comprehensive rehabilitative care [at] the [bedside, as well as to] supporting contingency, 

humanitarian, and joint operations around the world” (Ensuring Medical Readiness, 2016, 

p. 9). All these tasks link to our nation’s strategic priorities: as Rear Admiral Moulton, 

MSC, USN, has emphasized, “the core mission of the Navy Medicine is inextricably linked 

with those we serve, the United States Navy (USN) and United States Marine Corps 

(USMC)” (Ensuring Medical Readiness, 2016, p. 2). Admiral Moulton continues by saying 

that that to “be fully engaged with supporting our maritime strategy [requires keeping] 

sailors and marines healthy and ready to deploy, as well as [delivering] world-class care, 

anytime, anywhere” (p. 2).  

One of the key components of Navy Medicine is the Navy Nurse Corps (NC). The 

NC supports the Navy and Marine Corps’ warfighting capability by providing cost-

effective, high-quality care to active duty and retired service members and their families. 

To provide this level of care, nurses need to acquire training, education, and proficiency in 

various subspecialties (SSPs). Six of these subspecialties are identified by the NC as critical 

SSPs vital to accomplishing the wartime mission: Medical/Surgical (1910), Critical Care 

(1960), Peri/Op (1950), Emergency/Trauma (1945), Anesthesia (1972) and Mental Health 

Provider (1973) (Kinstler & Johnson, 2005). These critical SSPs make up the surge force 

inventories in the NC and are needed for up-tempo operational readiness in direct support 

of the Chief of Naval Operations’ (CNO) and the Commandant of Marine Corps’ (CMC) 

operational or theatrical contingencies. 

The commitment by Navy Medicine and the NC to be in sync with the CNO and 

CMC’s operational plans requires the Nurse Corps community to allocate subspecialties 

according to the needs of the Navy with the mindset of operational readiness. The current 

accession or recruiting pipelines utilized for producing new nursing graduates are the 

Direct Accessions (DA), Recalls, and other training pipelines like the Naval Reserve 
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Training Corps (NROTC), Nurse Candidate Program (NCP), or Medical Enlisted 

Commissioning Program (MECP).  

NROTC, NCP, and MECP graduates are brand new nurses and labeled as generic 

professionals, coded as 1900. The majority of nurses who are coded 1900 are made up of 

these newly minted nurses, while a small portion of 1900 billets consists of those who are 

in transit, such as active duty nurses receiving Graduate Medical Education or training or 

active duty nurses on sick leave. The brand-new nurses all go through nursing internship 

programs before transitioning into other specialty codes and gaining their new SSP. 

Accession via the training pipelines is limited to the total number of congressionally 

authorized billets (BA). “Only authorized billets, not requirements, send demand signals 

to the military accession, education, training and distribution system” (Department of the 

Navy [DoN], 2015, p. 10). The new (1900) nurses each need time to get trained to fill an 

SSP according to the needs of the Navy. 

When the training pipelines are inadequate to meet the end strength needs, the DA 

and Recalls accession sources are used as a valve system. The valve system incorporates 

the DA and Recalls, which allows NC personnel managers to meet the targeted End-

Strength (E/S), or total number of personnel permitted by the BA each year, as well as to 

ensure that the NC has enough quality—i.e., enough trained nurses in each SSP to meet 

operational and non-operational requirements. The valve system allows NC manpower 

planner to pick and choose different ranks as well as specialties based on individuals’ 

accumulated skills and education level to fill the gaps not achieved through the training 

pipelines. 

A. PROBLEM 

Under this system of accession, the NC is currently meeting its targeted E/S, 

fielding 96% of Congress’ authorized billet (BA) (H. Ray, spreadsheet data email to author, 

November 13, 2018). At the same time, however, the NC suffers from an imbalance in the 

management of its quality, the subspecialties (SSP). Per the spreadsheet obtained from 

CDR Ray, critical wartime subspecialties (i.e., requirements to staff deployable specialties) 

are understaffed, while the specialties fulfilling non-operational requirements are 
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overstaffed. In other words, too many nurses are being trained on non-critical SSPs during 

peacetime; likewise, too many new nurses are accessioned each year directly from the 

training pipeline—brand new nurses needing more training before they can be managed 

under a specific SSP group. This accession practice results in an undersupply of critical 

SSPs should a contingency arise. 

A study by the Institute for Defense Analyses (IDA) that examines the total force 

mix within entire DoD medical community (i.e., not just the Navy NC) finds that the 

primary cause of understaffing of wartime subspecialties requirements could be because 

MTFs do not have enough patient acuity, which limits nurses’ ability to maintain clinical 

skills (Whitley, Gould, Huff, & Wu, 2014). There is not enough beneficiary care workload 

for nurses in these facilities to train in preparation for potential operational needs. 

Operational medical force training is therefore limited by beneficiary care requirements.  

Manpower practitioners in the NC are feeling the effects of the imbalance in SSPs 

indicated in the spreadsheet data. The NC Manpower and Navy Medicine’s Business 

specialty leader, CDR H. Ray, organizes monthly Manpower voice-calls. The purpose of 

the monthly calls is to share knowledge and new policies among the practitioners. In an 

official email to the group following one of these meetings (February 1, 2019) CAPT 

Valerie Morrison puts forth ideas that “the old practice of balancing our operational needs 

against the beneficiary care-requirements should be put to rest; instead, we need to adhere 

what our National Defense Strategy needs are.” Another Navy NC Manpower Analyst, 

CDR Robert Johns, who works at BUMED, Navy Medicine, in the Total Force/Human 

Resource Manpower (M1/M12) office, likewise expresses his concerns to the group, saying 

that, “these imbalances in the mix of skills in the NC will be felt to a greater degree over 

the next few years. This intensified impact is due to increased emphasis on operational 

readiness per the new National Defense Strategy” (R. Johns, email to author, February 2, 

2019). This emphasis on operational readiness intensifies the NC’s need for more accurate 

Manpower planning. 

Currently, the Medical Manpower All Corps Requirements Estimator 

(MedMACRE) is the tool used to determine the NC’s staffing needs. This thesis proposes 
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a Markov Model that forecasts surge force planning using a continuous chain of estimations 

based on an initial inventory to predict the annual end strength of the NC system. 

B. IMPORTANCE 

Having the right quantity and right quality NC for the right jobs—ashore, onboard 

ships, under the sea, at the battlefield, and in the air or on the ground during a Medical 

Evacuation (MedEvac) transportation or transitional care—plays an integral part in Navy 

Medicine’s success. Because of such successes, provided by highly qualified nurses and 

other medical professionals, the wartime surge force will likely continue to face increased 

demand. The IDA researchers Whitley et al. (2014) note, “The deployment requirement 

was a smaller medical footprint in theaters compared to any other wars before” (p. v). 

Despite this smaller medical footprint, the Operation Enduring Freedom/Operation Iraqi 

Freedom (OEF/OIF) data gives a better result than any other wars before—i.e., more lives 

saved. One reason for the better outcomes despite the smaller footprint was the highly 

specialized capabilities of the nurses and other medical personnel. At the same time, 

however, based on data covering FY2003–12, these researchers document that critical 

wartime inventories of subspecialties (SSPs) were understaffed across all service branches: 

Air Force, Army, and Navy Medicine. The practice of highly specializing to provide a high 

capability in the theater environment will very likely continue but compensating for 

understaffing with highly specialized personnel only goes so far; as the operational goals 

set forth in the NDAA increase demand for critical wartime inventories, the NC needs both 

quantity and the quality to accomplish the mission. 

In addition, it is very likely that the current imbalance in manpower is resulting in 

a suboptimal use of funds. Optimization of required wartime SSPs E/S could therefore 

produce more efficiency within a constrained defense budget.  

C. RESEARCH OBJECTIVES 

Despite the small size of the naval medical strategic force, its manpower planning 

is very complex. The more complex the system is, the greater demand it produces for 

correct and successful force planning. This thesis therefore proposes more precise ways to 

optimize the surge force planning for the Navy Nurse Corps (NC) to maximize the 
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probability that enough personnel will be available in critical SSPs to meet operational 

needs during a contingency. The objective of this thesis is to build a Markov model to 

forecast future E/S and operational surge forces to assess whether they will meet the 

operational readiness goals from the National Defense Strategy (NDS). This model is used 

to forecast a balanced mix of NC surge forces over the next six years in planning. The 

Markov model is then utilized in a fixed inventory equation to determine the number of 

personnel required to meet the target aggregate E/S of the six critical operational SSPs. 

The Markov model can thus assist in managing NC personnel and can help in 

making recommendations for a strategically sound proportion of operational and non-

operational forces. 

D. THESIS ORGANIZATION 

The remainder of this thesis is divided into five chapters. Chapter II gives a broad 

overview of Navy Medicine and examines how the DoD Health System’s Platform 

Realignment into the DHA is a possible reason for the skill imbalance in the NC. Chapter 

III provides a literature review on the utilization of the Markov model and conceptual 

framework. Chapter IV describes data and methodology. Chapter V describes the 

implementation of the model and conducts an aggregate and a subspecialty level analysis. 

In addition, this chapter discusses limitations on the analysis. Chapter VI concludes with a 

summary and future study recommendations based on these results. 
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II. INSTITUTIONAL BACKGROUND

Manpower planning entails forecasting the right number and quality of people at 

the right place and time. Constructing a Markov model of NC SSP requires considering of 

the current NC system’s behavioral trends and various categories of the systems- different 

SSPs within the NC Organization. This chapter therefore provides a description of how a 

billet (i.e., a Navy job position) becomes authorized (funded); explains the current method 

of modeling the NC’s Manpower requirement; and analyzes the possible sources of the 

suboptimal SSP distribution in the NC.  

A. AUTHORIZED BILLET (BA) 

According to the Operational Navy Instruction 1000.16 (OPNAVINST 1000.16), 

Authorized Billets (BA) are those faces—current inventory of personnel—that are 

supported by resources (i.e., funded) (DoN, 2015). Per OPNAVINS 1000.16 and Rodney 

(2017), each billet in the Navy is a job position described by a unique unit identification 

code (UIC) that is usually filled by personnel possessing the authorized grade, designator, 

and sometimes secondary expertise required for a billet. There are seven authorized grades 

for the nurse corps: O-1 to O-7. The primary expertise required for the nursing billet is 

2900, a designator. Some billets require more specialized skills than are defined by a 

designator; these types of secondary expertise required for a billet are called additional 

qualification designators (AQDs). The billets become authorized when Congress provides 

funding for them. In Manpower planning, BA is the target that personnel planners endeavor 

to meet (Rodney, 2017). 

B. MEDICAL READINESS AND REQUIREMENTS MODEL 

While the BA tells manpower planners how many personnel are funded in a given 

FY, manpower requirements are statements of the quantity and quality (i.e., skills, 

seniority) of people required to perform the work under consideration (Rodney, 2017). The 

Manpower requirements process is also the starting point in the National Defense Strategy 

(NDS), which provides a strategic requirement signal to the Navy (Rodney, 2017). As per 

Rodney (2017), the Manpower requirements process produces detailed sets of quantity 
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with quality—the number of billets required for each Navy activity, specified by skills and 

seniority level. 

Per Deputy Surgeon General Rear Admiral J. Terry Moulton’s congressional 

testimony (Ensuring Medical Readiness, 2016), the modeling and projections for the 

required number of uniformed providers are based on the Operational Plans (OPLANS) 

and the Medical Manpower All Corps Requirements Estimator (MedMACRE). Admiral 

Moulton further notes that the OPLANS “outline the capabilities required to prosecute 

various wartime scenarios based on the Secretary of Defense’s Defense Planning 

Guidance” (p. 3). The MedMACRE is a requirement tool that can run under different 

scenarios: for example, the most stressed OPLAN, Level IV (i.e., peacetime planning), will 

yield different requirements than if the MedMACRE were to run for OPLAN, Level III. 

Limitations of the modeling tool, however, include its underlying assumptions about how 

the NC practices SSP coding for operational planning: based on these assumptions, the 

model is unable to capture SSPs “masked” by an NC’s most current billet or assignment. 

For example, NCs are selected to attend Graduate Medical Education (GME) after 

acquiring one or more SSPs. If GME is included in the MedMACRE simulation, the model 

will label GME candidates with only the name of their current subspecialty program and 

suffix T. This coding masks the SSPs previously held by the GME candidates.  

C. POSSIBLE SOURCES OF SSP IMBALANCES IN THE NC 

Spreadsheet data from CDR Ray shows an imbalance in operational and non-

operational SSPs in the NC (H. Ray, email to author, November 13, 2018). According to 

an internally circulated Navy Medicine briefing card on MedMACRE phase II from July27, 

2018, primarily, the imbalance in the NC’s skill mix is due to a sweeping change in our 

National Defense Strategy, including increased focus on its “readiness.” The 2018 National 

Defense Strategy focuses on rapidly adopting “Joint Forces,” according to the Public Law 

114-328 (Wilkie, 2018, p. 2). The National Defense Authorization Act (FY17 NDAA) 

focuses on the renewed emphasis on readiness and Joint Forces by restructuring 

organizational realignment at every level. FY17 NDAA mandates the uniformed force 

structure of the services’ medical departments be based on readiness requirements and 
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mandates the creation of a single agency, the Defense Health Agency (DHA). As part of 

the FY17 NDAA implementation process, the military treatment facilities (MTFs) are 

undergoing a restructuring in four phases, depicted in Figure 1 (Wilkie, 2018). The 

transition will take place in the mainland MTFs first, from the East to West Regions. 

Ultimately, all MTFs, including Outside Continental United States (OCONUS) or oversees 

MTFs, will report to the single agency, DHA, by the end of Phase 4, FY22 (September 30, 

2022). 

DoD MTFs transition to DHA in phases from Atlantic to Pacific and eventually 
OCONOUS. 

Figure 1. DHA Proposed Transition Approach. Source: K. Hupfl 
(email to author, June 14, 2018). 

The sweeping changes following the passage of FY17 NDAA and internal 

Department of Defense (DoD) health care reforms—i.e., the realignment of medical 

services under the DHA—serve as the catalysts for Navy Medicine to align its force 

structure more directly in support of the operational requirements set forth in the NDAA. 

The Navy Medicine briefing card from July 27, 2018, notes that the realignment of the 

uniformed force structure will, over time, increase the number of nurses in specialties 

required to support operational demands while decreasing specialties that have lower 
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operational requirements Accordingly, Navy Medicine’s force structure must meet the 

operational capability requirements of the U.S. Navy and U.S. Marine Corps operational 

needs. Navy Medicine’s focus on the realignment of the operational commanders’ mission 

objectives also increases in wartime inventories, because of the Navy and Marine Corps 

are moving towards the distributive operations per the FY17 NDAA directives. More 

important, operational readiness is paramount to combat survivals.  

Another possible cause for SSP imbalances between the wartime SSPs and non-

operational SSPs is availability of training ground. CDR Heather Ray, NC, BUMED 

expresses how the Navy beneficiaries’ acuity levels are lower compare to the public (H. 

Ray, phone conversation, November 30, 2018). According to CDR Ray, this leaves limited 

space for the training needed to maintain the skills for desired SSPs. 

This chapter has outlined a current change to the Navy Medicine’s priority focus to 

realign with the National Defense Strategy (NDS) and CNO and CMC’s operational 

demand. In turn, the supporting staff corps, like NC’s focus has shifted to operational 

readiness. When it comes to NC wartime readiness, the organization’s wartime SSP 

inventories suffers from understaffing. The next chapter reviews literature to determine 

what tool to use to address this issue of SSP understaffing. 
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III. LITERATURE REVIEW AND CONCEPTUAL FRAMEWORK 

This chapter offers a literature review that discusses the use of Markov Model in 

Manpower planning more broadly and examines previous work that applies Markov Model 

to address NC personnel issue, which informs this project’s approach to providing solutions 

to the problem of suboptimal SSP distributions in the NC. 

Various researchers like Bartholomew (1971), Smith (1970), Forbes (1971), and 

Vajda (1978) have all utilized probabilistic models in their research on manpower planning 

(Josiah, 2014). The probabilistic approach to manpower planning using Markov modeling 

was proposed by Bartholomew. Journals and theses are well supplied with articles that 

discuss implementation of Markov modelling in manpower planning. Sales (1971) 

validates Markov models use in Manpower with high reliability. Davies (1981) applies 

probability in the Manpower forecasting. Wijngaard (1983) articulates historical data 

aggregation in Manpower management science. Grinold and Marsall (1977) depict 

Manpower planning models by use of Markov. Jiang and Liu (2016) use hidden Markov 

models to forecast municipal waste (attrition) under uncertainty. Zanakis and Maret (1980) 

apply a Markov chain to Manpower planning. Ezugwu and Ologun (2017) use Markov 

Chain to build a predictive model for Manpower planning. Rowland and Sovereign (1969) 

give insights to internal Manpower supply analysis using Markov inside the industrial 

relation. Hall and Moore (1982) use Markov chain to forecast personnel under uncertainty 

related to recruiting shortfalls, stay or leave decision. 

A. MARKOV AND THE NC 

The use of Markov model in the military Manpower planning ranges across many 

communities and services. Two previous theses use Markov models to investigate 

accessions sources to optimize NC Manpower planning. These theses contribute to 

forecasting of next five years of force structure using different numbers of nurses from 

various sources of Accession; however, they do not address the imbalance issue in NC by 

the subspecialties (SSPs).  
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The first thesis, by Buni and Deen (2004), establishes the usefulness of the Markov 

model in NC Manpower planning. Like the present study, they use the model to investigate 

different accession sources for NC to forecast whether the force structure would meet 

targeted end strength over the next five years; however, their study focuses on personnel 

grades O1–O3.  

Buni and Deen (2004) analyze data that the authors received from the Bureau of 

Medicine and Surgery (BUMED) Manpower Information System (BUMIS). The data 

covers FY1991 through FY2003; the authors use this data to predict future stock values for 

the ranks of O1 through O3. To make these predictions, Buni and Deen analyze a number 

of accession sources: The Navy Reserve Officers Training Corps (NROTC), the Medical 

Enlisted Commissioning Program (MECP), the Nurse Candidate Program (NCP), the 

Direct Accession (DA), the Baccalaureate Degree Completion Program (BDCP), the 

Health Services Collegiate Program (HSCP), and Full-Time Out-Service Training (FTOS). 

According to Harvie (2014), the accession source FTOST phased out in 1993; likewise, 

two other sources phased out in 1995, the BDCP and HSCP (Harvie, 2014).Buni and Deen 

use two groups of NC cohorts, FY90–94 and FY95–98, in their study. They follow cohort 

years 90–94 up to 10 years and measure the retention rate at different years of service 

marks—the four-, five-, seven-, and 10-year marks—to “allow [for] the [nurses’] 

completion of an initial obligation of four years and a follow-on assignment of three years” 

(p. 20). Buni and Deen follow the cohort of FY95-98 for five years. To analyze the data, 

they use a logistical regression model that includes the dependent variable of stay and 

independent variables of education level, gender, age, source of accession, and dummy 

variable for FY. 

Buni and Deen find that 10-year retention pattern for the FY90-94 year cohort 

shows that accessions from the Recalls and the MECP consistently showed a higher, 

statistically significant probability of staying in the NC, while other accession sources 

showed lower probability of staying and were statistically insignificant (Buni & Deen, 

2004, p. 70). They also find that being male had a positive significance for staying past 

their initial obligation compared to female at all years of decision point—at the four-, 

five-, seven-, and 10-year mark. 
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Buni and Deen’s aim was to forecast the steady state of the NC using the Markov 

Model on the effect of the current accession sources. The following year, Kinstler and 

Johnson (2005) conducted research on the NC’s challenge to determine the appropriate 

number of nurses to access for meeting the desired end strength authorized by congress. In 

their research, Kinstler and Johnson follow essentially the same methodology, but address 

assumptions made in Deen and Buni’s study, in which all the accessions are assumed to be 

of Ensign Rank. The writers also include in their model the six subspecialties identified by 

Navy Medicine as vital to the mission.  

In their model, the authors merge BUMIS data with Defense Manpower Data 

Center (DMDC) data to produce a combined database (CDB) and track nurse accession 

sources and career progressions for the years 1990 through 2001.  They merge DMDC data 

into BUMIS to explore extensive demographic data. They also add a proxy variable for 

civilian unemployment rate from the Bureau of Labor Statistics (BLS). They then use a 

logistics regression like Buni and Deen to forecast the probability of nurse’s promotion, 

stay in the Navy, or leave the Navy. They observe that the hiring sources (specifically the 

MECP) have a statistically significant effect on both retention and promotions; however, 

this delta is insignificant in the Markov Model (Kinstler, Johnson, Richter & Kocher, 2008, 

p. 625). 

In contrast to these studies, which focus on the accession sources, the present study 

focuses on predicting the right mix of quality—accession numbers by operational force—

to meet the necessary balance in the NC force structure for the wartime inventory planning 

within the congressionally authorized BA. This is important because the NC could 

influence the personnel flow at the accession source, which could reflect in the Markov 

Model. 

The literature review shows that Markov application in the field of Manpower has 

wide use. Into the next section, a conceptual or the theoretical framework is established, 

which is employed in the next chapter.  
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B. CONCEPTUAL/THEORETICAL FRAMEWORK 

To analyze whether current NC personnel planning aligns with the required end 

strength of the NC, this thesis creates a Markov model. The theoretical knowledge to create 

that model is derived from several scientific journals and books that support the application 

of Markov modeling to Manpower planning. The knowledge base of this thesis was 

provided by a book, Statistical Technique for Manpower Planning, by Bartholomew, 

Forbes, and McClean (1991) and by a journal article, “The Validity of the Markov Chain 

Model for a Class of the Civil Service,” by P. Sales (1971). Statistical Technique for 

Manpower Planning catalogs many tools incorporated into the probabilistic models used 

by previous contributors to Manpower planning.  

Bartholomew explains, “the object of manpower planning is matching the correct 

number of people with the appropriate skills to the jobs available at a given time to fulfill 

that organization’s manpower needs” (1971, p. 3) According to Bartholomew, there are 

two considerations in manpower planning (p. 4): aggregates and uncertainty. Bartholomew 

et al. (1991) make two assumptions about the behavior of the Manpower system that enable 

the use of the probabilistic approach to these two concerns. The first is that “any manpower 

system can be examined through archival data” and that this data “aggregates to provide a 

useful description of the system” (p. 96). Second, these aggregates give insight into future 

uncertainties. Alternatively, the system could continue in a steady state. To address these 

inherently uncertain natures of the community in which the system operates, a Markov 

modelling is reliable for such a tool.  

Vajda (1978) lays out the underlying theory in the Manpower modeling, arguing 

for the Markov model as the “main tool” for Manpower planning. Markov modelling’s aid 

in the Manpower planning is further supported in the work by Bartholomew et al. (1991). 

Bartholomew et al. strongly suggest that Markov Chain Modelling answers questions about 

the ideal force structure for the military. The usefulness of the model in the military is 

because of the heterogeneity in the classification of the military personnel, such as rank, 

SSP, location, and years in service. Bartholomew et al. suggest using a transitional model 

based on the Markov Chain to deal with a heterogeneous system such as the Navy NC. The 
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transitional matrix is discussed in the next chapter during the methodology and the 

implementation of the model. 

Other works have established the forecasting ability of Markov models. As Sales 

(1971) notes, Young and Almond graphically validate; while Forbes validates by means of 

goodness of fit statistics. Sales conducts both validation techniques and both show 

minimum variance in validity either tested by the goodness of fit or the graph method. 

Guerry (2011) coins three types of flows in the modeling a Manpower system: (1) 

recruitment flows, (2) internal personnel flows, and (3) wastage. In the case of the NC, the 

internal personnel flows occur between the different personnel categories, such as a nurse’s 

SSP, rank and the assigned billets; and the wastage takes the form of attrition, leaving the 

service, or transition to communities other than the NC. The recruitment flows include the 

DA, Recalls, NCP, NROTCs or MECP; however, these recruitment flows are not modeled 

in this thesis, because no matter what the accession source, the NC can only be accessioned 

in the operational force categories just from the DA and the Recalls. The next chapter 

applies these tools to the problem of NC SSPs imbalances and Sales’ validation tools to 

show the model’s validity. 

This chapter provides insight into the utilization of probabilistic approach to 

Manpower planning by the various researchers in various community and disciplines and 

establishes a theoretical or conceptual framework about the Markovian Models. To analyze 

whether current NC personnel planning aligns with the required end strength of the NC, 

this thesis uses a Markov model. The next chapter discusses data, provides model 

description and methodology of Markov Model creation from the raw data. 
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IV. DATA, METHODOLOGY, MODEL VALIDATION AND 
IMPLEMENTATION OF MODEL, AND RESULT 

Data for this thesis—including the raw data used for calculations in tables and 

figures—was obtained from a database of the Department of Defense Manpower Data 

Center (DMDC), on Rank, Accession Source, Fiscal Year, and Navy community, merged 

with data from the Bureau of Naval Personnel/Navy Personnel Command (BUPERS-

NAVPERSCOM) personnel files on NCs’ subspecialties (SSPs). 

A. DATA DESCRIPTION 

The data set contains annual snapshots on all Nurse Corps officers who were on 

active duty at the end of fiscal years 2010 to 2018. From the snapshot data, we produce 

pooled-cross-sectional data, with 3,097 observations. We calculate historical rates for 

accessions, promotion, continuation, and attrition using another analytical software and 

solutions tool, statistical analysis system (SAS), and exported as an Excel file. The 

variables included in the data are as follows: 

1. Subspecialties (SSPs) 

Per the NC Subspecialty Code Management Guidance, the subspecialty code (SSP) 

system is the personnel system used to manage the demand and supply of NC officers. The 

SSP system compares the nursing skill inventory to mission requirements (i.e., demand). 

This demand drives annual recruitment and training plans as well as the retention tools to 

maintain critical specialties. The SSP system allows for identifying NC officers with 

certain specialty experience, training, and education. This feature of experience level in 

turn helps executive officers determine for the NC Officer’s assignment in a Military 

Treatment Facility (MTF) or operational theater. 

SSP codes consist of a four-digit number and an alphabetic suffix: the number 

describes the subspecialty area, and the alphabetic suffix letter describes the level of 

experience, education, certification, and training (BUMIS, 2018). For example, the 

subspecialty “Critical Care Nursing” has a numeric code of 1960, and it can have any of 

the eight suffixes (BUMIS, 2018). This data set includes the suffixes S (one year of 
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competency in the subspecialty), R (three years of competency), K (more than three years 

of competency plus passage of the board exam in the subspecialty), and P (master’s degree 

in the subspecialty).  

As per BUMIS (2018) the primary SSP or Subspecialty 1 should reflect a nurse’s 

current, primary duty except for licensed independent practitioners (LIP) filling billets in 

the 1972, 1973, 1974, 1976, and 1981 specialties who are also pursuing career milestones 

(p. 3). “These individuals will maintain their LIP SSP” (BUMIS, 2018, p. 3) even though 

their primary role is as a department head (DH), officer in charge (OIC), senior nurse 

executives (SNE), executive officer (EX-O), or commanding officer (CO). All secondary 

and tertiary SSPs should describe last specialties or competencies held. The secondary or 

Subspecialty 2 is defined as “fully trained, might require a minimal refresher training to be 

fully credentialed” (BUMIS, 2018, p. 4; DoN, 2015, p. B-7). The tertiary or Subspecialty 

3 is defined as “fully trained but might requires a lengthy refresher training to be fully 

credentialed” (BUMIS, 2018, p. 4; DoN 2015, p. B-7). At any given time, only three 

subspecialty codes can be maintained; which is consistent with the Medical Subspecialty 

codes per the OPNAVINST 1520.23 (DoN 2015, p. B-7). In addition to all the SSPs 

currently recognized in the SSP management guidelines, the data contain some obsolete 

codes—one 1980P and ten 1980Q—currently coded as 1981 (Nurse Midwife) according 

to Nurse Corps Personnel Planner CDR Ray (H. Ray, email to author, February 20, 2018). 

In addition to the SSP management guidelines regarding the use of the eight alphabetical 

suffixes, the data also has one extra suffix, T. According to CDR Ray, the new suffix T is 

to indicate that a nurse is in training. 

2. Rank 

The current NC rank for this thesis includes O-1 to O-6. 

B. MARKOV MODEL 

A Markov model is a probabilistic tool used to model randomly changing systems. 

Markov models are memoryless, which means that the probability that a system will 

occupy a given future state only depends on the current state—not on the past states. For 
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this reason, the Markov model is suitable to forecast future states without contending 

anything about past policy or practices. 

In this research, a Markov model is used to describe how NC officers, as (a cohort) 

move through a system (rank) to evaluate system behavior (growth, or steady states). 

Building the Markov models requires three basic assumptions. 

The first assumption is that the system consists of finite states and that every entity 

of the system will reside in one, and only one, state (Bartholomew, 1971). A “state” is a 

category in which an element of the system may remain for a time-step (t).  

Second, we assume the Markovian property, which holds that the probability that 

the system will transition to another state depends only upon its current state. In another 

words, that particular element’s entire history is really only dependent on where the 

element was in the previous time-step.  

And finally, the third assumption states that the transition probabilities remain 

stationary, meaning “that the transition matrices for some manpower systems tends to 

remain constant over time or at least change only gradually from year to year” (Sales, 1971, 

p. 87).   

Figure 2 depicts at an aggregate level the Markov model used in this thesis. In the 

model, the seven finite states are the NC ranks O1 through O6 and the absorbing state, 

attrite. As the figure shows, the second assumption holds true given that an NC only 

occupies one finite state at any time. For example, she cannot be both an Ensign (O1) and 

a Lieutenant (O3) at the same time. In the next time-step, if the NC was in state O1 during 

the previous time-step, then the NC can transition into one of three states: (a) remain as 

O1, shown by a curved arrow; (b) be promoted to the next grade or next state, O2, shown 

by the straight arrow pointing right; or (c) is no longer in the system (attrite).  
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Figure 2. An Aggregate Level Markov Modeling Showing Two of 
the First Three Assumptions 

C. METHODOLOGY 

Like many other systems, the NC consists of a population of individuals who 

transition between states. For instance, an element might be in a state, ni, at a given time t.  

At (t+1), their state is nj. Some elements remain at the same grade during that time step, 

while others might promote to the next grade. Still others leave the system during at that 

time. Elements that leave the system attrite.  

An NC officer can only occupy one of six finite states that correspond to their 

paygrade. Based on the finite state assumptions, we create flow models that describe the 

behavior for each fiscal year in the DMDC data. From each flow model, we created a 

transition matrix, an example of which appears in Table 1.   
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Table 1. Sample of NC Transition Matrix 

 

 

This chapter has given a description of the data source, the Markov model in 

general, and the transition matrices built from the original data. The next chapter covers 

the validation and implementation of these transition matrices for an aggregate as well as 

subspecialty level of analysis and discusses some analytical limitations. 

  

FY17 O1 O2 O3 O4 O5 O6 Att
O1 0.48 0.50 0.00 0.00 0.00 0.00 0.02
O2 0.00 0.52 0.45 0.00 0.00 0.00 0.03
O3 0.00 0.00 0.79 0.13 0.00 0.00 0.07
O4 0.00 0.00 0.00 0.82 0.10 0.00 0.07
O5 0.00 0.00 0.00 0.00 0.80 0.08 0.11
O6 0.00 0.00 0.00 0.00 0.00 0.88 0.12
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V. NURSE CORPS MANPOWER DATA ANALYSIS USING 
MARKOV MODEL 

The data we use for this analysis incorporates observations on every Navy NC 

officer on active duty at end of each fiscal year, from FY10 through FY18. We analyze (a) 

all NC officers who rank from Ensign (O1) to Captain (O6), and (b) include both 

operational and non-operational forces.  

A. AGGREGATE LEVEL ANALYSIS 

For an aggregate level analysis, our data only incorporates ranks from Ensign (O1) 

through Captains (O6) for FY10-FY18. The number of NC officers’ distribution by its rank 

from Ensigns (O1) to Captains (O6) is shown in Figure 3. We lose four individuals who 

are all Flag-officers and were excluded from our analysis due to the small sample size. 

 

Figure 3. Number of NC Officers Distributed by Rank 

1. Development and Validation 

Prior to implementing the Markov model, we determine the stationary transition 

matrix, P, required to ensure the validity of our Markov modeling and forecasting. A large 
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number of years in the data are used to create the transition matrix insure better estimates 

of the transition rates. However, the more years included in the estimates, it becomes more 

difficult to ensure that the transition rates are stationary. We consider this trade off when 

we build the transition matrix.  

To determine the stationarity of the matrix, we build a confidence interval (CI) by 

calculating the standard error (s.e.) for each annual transition. Next we compare the 

aggregate transition rate for that particular transition to determine if it is contained within 

the CI. The more CIs that contain the respective aggregate transition rates, the more 

stationary the model. According to Sales (1971), the estimated standard error (s. e.) 

obtained by using the binomial distribution. 

𝑠𝑠. 𝑒𝑒. (𝑝𝑝𝑖𝑖𝑖𝑖) = �𝑝𝑝𝑖𝑖𝑖𝑖(1−𝑝𝑝𝑖𝑖𝑖𝑖)
𝑛𝑛𝑖𝑖

 ,    (1) 

where pij is the true underlying transition probability from i to j and where ni is the number 

of elements that started the time-steps in state i.  

When we first built the transition matrix, P, using all eight years of aggregate data, 

only 30% of the transition rates were sufficiently stationary, which, according to Sales’ 

goodness of fit test, is insufficient to call the transition matrix valid. Thus, we took a 

remedial action in building the P by shrinking the window of empirical data, from older 

years first until after seven remedial actions, a transition matrix that validated at 73% was 

determined using empirical data for FY 2016 and 2017, shown in Table 2. 

Table 2. Validated Transition Matrices, P 

 
 

FY16-17 O1 O2 O3 O4 O5 O6 Att
O1 0.46 0.51 0.00 0.00 0.00 0.00 0.03
O2 0.00 0.50 0.47 0.00 0.00 0.00 0.03
O3 0.00 0.00 0.81 0.11 0.00 0.00 0.08
O4 0.00 0.00 0.00 0.83 0.09 0.00 0.08
O5 0.00 0.00 0.00 0.00 0.81 0.08 0.11
O6 0.00 0.00 0.00 0.00 0.00 0.83 0.17
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2. Fixed Inventory Analysis 

Having determined the transition matrix, the next step is to implement the model 

using the Bartholomew’s equation of Manpower Inventory Models given by 

 n(t) =n(t-1) *P + R*r  (2) 

where, 

• n(t) are the expected number of individuals in a given state (say, a rank) at 

that time-step (for this study, a time-step would be measured in a full FY); 

• n(t-1) is the inventory vector at the previous time step; 

• n(0) represents the initial inventory vector; 

• P is a transition matrix;  

• R is a scaler that describes the number of new accessions; and  

• r is a vector describing how the cohort is distributed among each states, 

between 0 and 1.  

To implement equation (2), we calculate the vector, r, from the empirical data, 

FY2011 through 2018, provided in Table 3. Where, r=[0.93, 0.05, 0.02, 0.00,0.00,0.00] 

just as our data, then 93% of new personnel recruited will enter category one (O1), 5% will 

enter category two (O2), 2% will enter the categories three, (O3) and the cohort have a 0% 

probability of being recruited at the rank of O4, O5 or O6 (categories five and six). 

Table 3. Calculated Vector, r 

 
 

Table 4 provides the results of the implementation of Bartholomew’s inventory 

equation, equation (2). We use beginning inventory, n(0), for FY19 from the DMDC data 

and listed by rank, O1 through O6. We then solve for the decision variables, annual 
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accession numbers, to forecast annual E/S for the planning period FY20–25 using the 

Markov chain. The values of these decision variables are calculated based on the 

limitations expressed in the constraints. The constraints we apply to the formula 

implementations are as follows: (1) the ratio of R1/R2±.1, signifying that an allowable 

increase or decrease in number of accessions is equal to ± 10%; and (2) each year the 

accession goal is greater than or equal to (≥) 160 NC. This number is an estimate of 

accession number per year after restructuring under DHA, based on the DMDC and 

BUMIS record. 

Table 4. Implemented Bartholomew Inventory Equation Using P 

 
 

Under the given constraints applied, we get our accession result or solution under 

the far right or the column R of the Table 4 and total inventory by rank and each proceeding 

FY is provided by the corresponding coordinates. An (n) represents the proceeding FY. 

For example, n(0) provides a beginning inventory for FY2019, this data is obtained from 

CDR Heather Ray, a Nurse Corps Personnel Planner at BUMED (H. Ray, email to author, 

November 13, 2018). For FY2020, n(1) through FY2025, n(6) are the calculated results 

indicating inventories by rank and totals per FY. The target is again an educated guess and 

we use our Benchmark FY25, per Ray, one of the Senior Nurse Corps Manpower 

Practitioners our known BA is only for FY25, while undergoing the all services 

realignment under the DHA (H. Ray, email to author, November 13, 2018). Figure 4 shows 

that known benchmark BA for FY25.  
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Figure 4. Benchmark FY25 BA, as per MedMACRE. Source: H. Ray 
(email to author, November 13, 2018). 

We can incorporate an ever-changing nature of real world into this model easily 

because the model is very flexible and can adjust to the most current policy information. 

For example, the target goals can adjust to known accurate numbers or to policy that seeks 

a certain number of accessions each year and/or the maximum and minimum allowable 

tolerance level change. After each adjustment, the optimization Solver rerun to forecast the 

new decision variables. In the Figure 5, the orange line shows total target and the blue line 

shows how the model is predicting. Moreover, our model predicts very close to the target 

for FY22–24; underpredicts for FY20 and 21 compare to our target goals; and overpredicts 

for until FY25. One of the reasons could be because of our constraints application and 

could be from how we had manipulated our annual goal to be at least 160 NC. To overcome 

this initial underproduction, we could relax on one or both the constraints we had applied. 
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In the bottom of Figure 5, the gray line shows an accession number increases from year to 

year.  

 
R (≥) 160, R1/R2 ±10% 

Figure 5. Forecasted Inventories against the Estimated Targets 
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The application of transition matrix P in the Bartholomew equation therefore can 

provide solutions to a problem like what accession mission must be over the next six years 

to achieve a given E/S, for example, the benchmark for FY2025 that we discuss the 

implemented into our solver.  

3. Steady State Analysis 

In addition to the implementation of the Bartholomew’s inventory equation to 

forecast a future inventory or accessions goals, a fundamental matrix S can also easily be 

constructed using the following equation: 

 S = (I – P)-1 . (3) 

The implementation of the fundamental matrix, equation (3), yields the following 

in Table 5. 

Table 5. A Fundamental Matrix, S Constructed from Our P 

 
 

This estimated fundamental matrix S provides useful information about a particular 

nurse corps expected length of time spent in one rank before advancing to the higher rank, 

provided the nurses have not experienced an attrition. Starting in the cell (O1, O1) at the 

top left corner cell and proceeding down the diagonals to the bottom right (O6, O6) shows 

an expected length of time any particular nurse remains in the particular rank if she ever 

made it to that rank. For example, a NC’s expected length of time to remain in rank of O2 

is roughly two years represented by the coordinate of (O2, O2), or five years and two 

months in the rank of O3 as denoted in coordination of (O3, O3) given they ever made it 

to the respective ranks. 

S O1 O2 O3 O4 O5 O6
O1 1.85 1.91 4.58 3.00 1.37 0.64
O2 0.00 2.01 4.82 3.15 1.44 0.68
O3 0.00 0.00 5.16 3.38 1.55 0.72
O4 0.00 0.00 0.00 5.92 2.71 1.27
O5 0.00 0.00 0.00 0.00 5.29 2.48
O6 0.00 0.00 0.00 0.00 0.00 6.04
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a. What to Make of the Off-diagonals 

By an algebraic calculation we can calculate conditional probabilities, from our 

model in Table 8, for example, what is the probabilities of a NC ever making it to the rank 

of Captain (O6) provided she started at the rank of Lieutenant (O3) is given by 

0.64/4.58=0.14. It means a nurse who commissioned as an O3 has roughly a 14 % chance 

of ever making it to the rank of O6. Mathematically, this conditional probability is given 

as pr. (individual makes it to j state | started in i) or Sij / Sjj. 

b. Estimating Steady State Inventory 

The latest model we build, the Fundamental Matrix S, provides a long-term steady 

state inventory calculation. Mathematically, this steady state inventory is denoted by n* 

and is given by an equation n*=RrS. 

Given our system is a steady state, from one time-step to another time-step variance 

is at minimum level we use the steady state equation to calculate the steady-state inventory. 

If NC system is a steady state that has very little fluctuation in its behavior producing high 

validity of CI then the application of this long-term steady-state inventory calculation 

yields that we are required to accession 202 NC officers each year for a known BA of 2677 

in FY2025.  

The steady state inventory calculation in Table 6 yields solution (202NC) per year. 

And the average of the accession number given by the Fixed Inventory Analysis, i.e., about 

(186 NC) each year. 

Table 6. Steady State Inventory Calculation by Implementing the 
Steady State Equation 

 
 

O1 O2 O3 O4 O5 O6
0.93 0.05 0.02 0 0 0

348 379 930 608 279 131 2675 **202**
FY25  goal= 2677

r
n*=RrS



31 

This close estimation of the accession goal either using Fixed Inventory or the long-term 

steady-state means the expected behavior of the NC system is stable and ensures that our 

model can be utilized for other NC characteristics. Next, we model the NC operational 

force versus the non-operational force, incorporating Ensigns through Captains.  

B. SUBSPECIALTY ANALYSIS 

For a subspecialty-level analysis, our data incorporates the operational and 

nonoperational status, in addition to the grades or ranks from Ensign (O1) through Captains 

(O6) for FY10–18 that we analyzed at the aggregate level of analysis. A summary of the 

data is providing in Figure 6.  

  

Figure 6. Navy NC Officers Operational and Non-operational Force 
Distribution by Rank 

3551

195

2127

1798

2193

5594

1748

3684

1347

1666

521

738

0 1000 2000 3000 4000 5000 6000

(O1-1) Operational

(O1-0) NonOperational

(O2-1) Operational

(O2-0) NonOperational

(O3-1) Operational

(O3-0) NonOperational

(O4-1) Operational

(O4-0) NonOperational

(O5-1) Operational

(O5-0) NonOperational

(O6-1) Operational

(O6-0) NonOperational

NC Distribution by Rank and Operational vs 
Nonoperational



32 

Using this data information we build a new transition matrix, Pssp . The new Pssp is 

utilized to address this thesis objectives of meeting the right number and right type [or right 

specialties, either operational or non-operational] of nurses in any given FY.  

1. Development and Validation: Pssp 

The aggregate level analysis provides a useful description of the NC systems’ 

behavior. Next, to address this thesis’s objective—determining the right number and right 

type (i.e., right specialties, either operational or non-operational) of nurses in any given 

FY—we build a new transition matrix, Pssp. To build this matrix, we use NC data from the 

DMDC from FY10 through FY18 that encompasses subspecialty (SSP) as well as grades 

(ranks). 

In building the Pssp, we make four assumptions: First, as Chapter I explains, and as 

in Kinstler and Johnson (2005), “six subspecialties (SSPs) were identified by the literature 

as being ‘critical’ to the Nurse Corps during times of increased operational commitments” 

(p. 20). Second, as per OPNAVINST 1520.23, Part B, only three subspecialties can 

maintain in the officer’s record (DoN, 2015). In the model, to be considered “operational,” 

an NC must have at least one of the six critical subspecialties. Thus, all three subspecialties 

were included in the modeling. Third, to avoid the incompetence liability during the 

medical deployment time, a minimum of one year of competency is required for an NC to 

count toward full operational readiness. For instance, NCs with an alphabet suffix of T 

(training), E (less than one-year experience in that field), or V (just having completed the 

accredited vocational studies) are excluded from consideration as a fully operationally 

ready. Lastly, to ensure we have enough of a sample to effectively estimate some of the 

smaller states, we use four years of data in building the Pssp. We take this chance, despite 

the fact that Sale’s method described above only finds that 44% of transitions are 

sufficiently stationary. Using these assumptions, we build a new transition matrix, Pssp, to 

capture subspecialty transition probabilities within the NC’s operational and non-

operational forces. Figure 7 provides a graphical representation of these transitional 

probabilities. 
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Arrows represent probabilities of moving to a different state, while arcs represent 
remaining in the same state. Additionally, from each node, there is a chance of attrition.    

Figure 7. Graphical Representation of Pssp Model 

The transition matrix Pssp, which gives the probability of these transitions, is shown 

Table 7. 

Table 7. Subspecialty Transition Matrix, Pssp 

 
 

In this Table, 1 & 0 represents an operational and non-operational NC, respectively, 

and O1 through O6 are the NC ranks from Ensign to Captain. For example, if the NC is in 

state O1-0, then the NC officer is non-operational, while, if she is in O1-1, then she is 

Aggregate Probs FY14-FY17

P O1           0 O1           1 O2           0 O2           1 O3           0 O3           1 O4           0 O4           1 O5           0 O5           1 O6           0 O6           1 Attrition
O1           0 0.478 0.015 0.316 0.144 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.047
O1           1 0.000 0.086 0.672 0.172 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.069
O2           0 0.000 0.000 0.388 0.202 0.267 0.096 0.000 0.000 0.000 0.000 0.000 0.000 0.048
O2           1 0.000 0.000 0.001 0.399 0.035 0.535 0.000 0.000 0.000 0.000 0.000 0.000 0.030
O3           0 0.000 0.000 0.000 0.000 0.627 0.205 0.075 0.010 0.000 0.000 0.000 0.000 0.084
O3           1 0.000 0.000 0.000 0.000 0.039 0.767 0.004 0.100 0.000 0.000 0.000 0.000 0.091
O4           0 0.000 0.000 0.000 0.000 0.000 0.000 0.771 0.069 0.090 0.001 0.000 0.000 0.069
O4           1 0.000 0.000 0.000 0.000 0.000 0.000 0.039 0.819 0.053 0.010 0.000 0.000 0.079
O5           0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.811 0.036 0.051 0.000 0.102
O5           1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.816 0.028 0.037 0.094
O6           0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.805 0.026 0.169
O6           1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.841 0.154
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operational. Similarly, if the NC promoted from O1-0 to O2-0, then her operational status 

did not change; however, if she promoted from O1-0 to O2-1, then her operational status 

and her rank both changed. On the other hand, if the NC started as O1-0 but was not 

promoted and did not change her operational status during that time-step, then the 

coordinates (O1-0, O1-0) give her probability of remaining in the same state. One of the 

considerations we made while conducting this validity test was to exclude any transition 

with a probability of 0.005 or less because of its minuscule chances of occurring. Therefore, 

we excluded the following three transitions, highlighted in red in Table 8.  

In order to utilize this new Pssp, we obtain a new vector, rssp (Table 8) from 

historical-accession distribution probabilities from FY10–18, obtained from DMDC. This 

new rssp encompasses rank and both operational and non-operational SSPs across all 

accessions.  

Table 8. rssp, Historical Accession Probabilities by Rank and SSPs  

 
 

To maximize the verisimilitude of the subspecialty transition model, Pssp, four sets 

of information are defined and determined: initial NC inventory, total target E/S, estimated 

proportion of operational vs. non-operational E/S, and accession goals. First, in order to 

project five to six years down the line, a current an initial inventory n(0) for each rank and 

operational as well as non-operational NCs are determined using the NC information 

obtained from the Nurse Corps Personnel Planner, CDR Ray. Table 9, created from the 

spreadsheet obtained from CDR Ray, displays this data (H. Ray, email to author, November 

13, 2018). 

O1           0 O1           1 O2           0 O2           1 O3           0 O3           1 O4           0 O4           1 O5           0 O5           1 O6           0 O6           1
0.881 0.046 0.024 0.030 0.010 0.006 0.001 0.002 0.000 0.000 0.000 0.000

rssp
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Table 9. Current Beginning Inventory of NC FY19 Showing 
Operational and Non-operational by its Rank. H. Ray (email to author, 

November 13, 2018). 

 

 

Second, a goal for a target end strength (E/S) is scaled down linearly from current 

target goals to the known benchmark for FY25 of 2667 and established based on data 

obtained from CDR Ray on November 13, 2018; this goal is shown in Figure 8. 

 

Figure 8. Total Targeted (Assumed) E/S by FY. Adapted from H. 
Ray (email to author, March 10, 2019). 

Third, because the NC does not manage its personnel by operational and non-

operational E/S, projected quantities of operational and non-operational E/S are calculated 

based on the assumed E/S in Figure 8 and operational and non-operational force 

distribution in Table 9; these quantities are shown in Figure 9. Considering that, all else 

being equal, the targeted operational forces E/S will continue to make up of about 44% of 

the total NC forces, a new targeted operational force is calculated, shown in Figure 9. 

CAPT CDR LCDR LT LTJG ENS Total %
Operation 18 101 221 515 267 140 1262 0.44
Non-opera 118 225 384 491 186 210 1614 0.56

CAPT CDR LCDR LT LTJG ENS 2876
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Figure 9. Assumed Targeted Operational E/S 

Lastly, we establish the minimum accession goals per year at 140 and the tolerable 

increase or the decrease accession rate from the (t-1) is at 10%. 

2. Fixed Inventory Analysis Result: SSP 

After implementing the Markov Inventory Model equation, we made use of all four 

sets of information-defined constraints to get an optimization of objectives variables, R. To 

optimize the desired variables, we minimized the squared deviations for force totals from 

the targets. We obtained the result shown in Figure 10. The top section of this figure 

provides the target E/S, shown by the line in yellow, and the predicted total NC force for 

each FY given the targeted E/S, shown by the line in blue. The middle section of the figure 

provides a total predicted NC force for each FY: operational, given by the orange line, and 

non-operational (i.e., shore) given by the gray line graph measured against the assumed 

targeted operational E/S as defined by the bold blue line. Per our modeling the targeted 

operational force shown by the bold blue line is under the line orange every year starting 

FY21. This means our target for the operational force is undershooting. In our defined 

scenario we keep operational force at constant proportion from year to year, i.e., we keep 

our operational force proportion to be at 44% only. The bottom graph of Figure 10 shows 

predicted accession goals for FY20–25.  
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Figure 10. Accessioned and Operational Forecasts Using BUMIS 
Initial Inventory at the Beginning of FY19.R1/R2 (±).1 & R ≥140  

Figure 11 provides a breakdown of total operational and nonoperational forces. In 

the columns, O1 through O6 represent NC Ranks, while the suffixes 0 and 1 mean 

respectively non-operational and operational.  
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Figure 11. Breakdown of Operational (1) and Non-operational (0) by 
Rank and FY 

As the table shows, consistently for each FY the distribution of the operational and 

non-operational forces demonstrates the following behavior: (1) most of the forces in ranks 

O1, O5, & O6 possess non-operational SSPs. On the other hand, (2) the majority of the 

forces in ranks O3 & O4 possess operational SSPs. Finally, (3) the rank of O2 has an almost 

equal number of operational and non-operational forces. 

3. Steady State Analysis: SSP 

Like the aggregate level analysis, we built a fundamental matrix, Sssp, by 

constructing an identity matrix, Issp, then taking an inverse of the difference (Issp – Pssp) 

to get Sssp. We used Sssp to forecast steady-state inventory for SSPs. As was discussed 

earlier, the steady-state inventory is given by n*= RrS.  

Per Kinstler and Johnson (2005), on average, the NC accesses 250 NCs/year. We 

used this information and our rssp and Sssp to calculate our steady-state inventory. Figure 

12 provides the result. 

0

100

200

300

400

500

600

700

800

O1           0 O1           1 O2           0 O2           1 O3           0 O3           1 O4           0 O4           1 O5           0 O5           1 O6           0 O6           1

Comparision of Operational and Non-Operational by Rank and FY.

FY19 FY20 FY21 FY22 FY23 FY24 FY25



39 

  

Figure 12. Solutions Showing Steady State Inventory Analysis, nssp* 

These results assume that the personnel flow in a system like the NC organization 

reaches its steady state. In addition, all else being equal—i.e., (1) the accession rate (rssp) 

remains steady as we have calculated; (2) we use a hypothetical number of accessions is 

R=250; and (3) the transition matrix, Pssp, is in a steady-state—then the resulting force 

structure is given in figure 12. Like our solution for the fixed inventory analysis, the steady-

state analysis also produces a similar behavior. i.e., the ranks of O1, O5, and O6 possess 

forces made up of more non-operational. On the other hand, the ranks of O3 and O4 possess 

forces more operational. Finally, the rank of O2 has almost equal number of operational 

and non-operational forces.  

This finding is critical in terms of our modeling strengths. This ability to provide 

an almost identical behavior either by the fixed inventory [n (t) =n (t-1) *P + R*r] or the 

steady-state [n*= RrS] means we build a reliable model, because the system doesn’t need 

to fight off in order to meet the drastic changes in the policy or requirements. In other 

words, the model can adapt to drastic changes but still predicts a reliable forecasting 

solution. Even, in simpler terms, our model’s forecasting ability is valid, because the 

transition probabilities are either constant or changes gradually. Either the constant or the 

gradual changes depicted by our model make a convincing case for one of the most difficult 
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assumptions we made in describing to build a Markov model in Chapter IV. From the three 

assumptions usually made in building for the Markov models, the last assumption, i.e. to 

reach that steady state is often most difficult to achieve. What does it mean to accomplish 

that steady state in terms of the manpower planning? This means that our model provides 

a reliable forecasting tools in order to study the future NC system’s behavior. 

C. LIMITATIONS 

To accomplish a sound and reliable “goodness of fit tests” by Sales (1971) we 

sacrificed our sample size and only utilized total of two fiscal years (FY16 and FY17) that 

yielded our aggregate level of stationarity at 73%. We used transition matrix P build from 

this small size sample to study about expected behavior of the NC system. On the other 

hand, we took our chances by taking larger sample of four years to build our transition 

matrix for Subspecialty, Pssp. We  took this chance to capture enough samples for some 

smaller unit subspecialties (SSP). Upon goodness fit test, the Pssp only yielded 44% of CI. 

Our model forecasts the needed number of NC accession without regards to where 

or what the accession source might have been. Similarly, the predicted operational forecast 

incorporates any of the six operational subspecialties at any specific ranks. 

D. SUMMARY 

This chapter provides an analytical discussion at both the aggregate and 

subspecialty levels. The models of both the aggregate level and subspecialty level behave 

tolerably well. The next chapter concludes with discussions about the Markov model’s 

strength in manpower planning, a summary of our analytical work and recommendations 

based on our modeling, and lastly provides a roadmap for future research. 
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VI. CONCLUSION AND RECOMMENDATIONS 

This chapter completes the study, first by summarizing the findings and discussing 

strengths and limitations of Markov modelling in the context of the NC system, then by 

offering recommendations for future research. 

A. SUMMARY OF FINDINGS: STRENGTHS AND WEAKNESSES OF 
USING MARKOV MODELING IN NC MANPOWER SYSTEMS 

Our objective in this thesis is to build a more precise way to optimize NC surge 

force planning and to forecast a balanced mix of operational critical wartime inventory and 

non-operational forces for the Navy NC. Markov models are an established tool in 

manpower management because they can be used not only to predict the aggregate 

behavior of the system but also to model various categories of the system, e.g., paygrades, 

years in service, cohorts, and job specialties. Other writers, including Ezugwu and Ologun 

(2017), make a similar confidence claim regarding the Markovian models’ uses in 

manpower management applications. Ezugwu and Ologun note that “with respect to 

organizational management, numerous previous studies have applied Markov chain models 

in describing title or level promotions, demotions, recruitments, withdrawals, or changes 

of different career development paths to confirm the actual manpower needs of an 

organization or predict the future manpower needs” (p. 557). 

That said, the weakness of using Markov models in the context of the NC 

specifically rests on the NC community itself: it is a very small community with diverse 

sub-specialties. For example, as per Navy Nurse Corps Subspecialty Code Management 

Guidance, the Nurse Corps codes its subspecialties under 19 categories (BUMIS, 2018). 

Therefore, the small number of NC personnel stretch across those 19 categories thinly, 

making the system difficult to model because some smaller sub-communities’ transitional 

probabilities become unreliable for building a subspecialty-specific transition model. We 

therefore decided the most practical model we could build would analyze operational vs. 

non-operational forces only. 
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We therefore build aggregate and subspecialty-level (operational vs. non-

operational) models to obtain a description of the Navy Nurse Corps (NC) system and 

address the institutional issue of imbalance in the NC’s operational and non-operational 

force structures, respectively. To conduct NC analysis we obtain from the DMDC and 

BUPERS for FY10-18; the variables we use include ranks from Ensign (O1) through 

Captain (O6) and all 19 subspecialties (SSPs), including all three subspecialties that an NC 

officer maintains in her record. To lower the operational liabilities, we exclude any of the 

critical wartime codes that had suffixes indicating training (T), less than one year of 

competency (E), and only completed vocational studies (V). 

Using remedial actions, we validate both models by Sales’ ‘goodness of fit’ 

method. To accomplish the highest level of goodness of fit validity while not endangering 

a loss of too much sample, we include data for two years to build the aggregate level model. 

For the subspecialty level model, we used four years of data to capture enough sample size 

for some smaller subspecialty and rank categories.  

Despite the smaller sample size in building our model, both models demonstrate 

high reliance on the accuracy of forecasting capabilities. Per the FY25’s benchmark of total 

authorized billet (BA), 2677, as discussed in Chapter V, Figure 5 (p. 28), our modeling 

forecasts that the demand for operational force rises, while the non-operational force falls, 

Figure 10 (p. 37). Per MedMACRE’s estimates, shown in Figure 4, the NC’s BA by FY25 

will probably experience 303 billets loss. This loss is mainly due to the realignment of the 

DoD medical services under the DHA, described in Chapter II. We discuss how that 

realignment will likely increase the need for operational forces, while the need for non-

operational forces will decrease. Therefore, all those estimated losses shown in Figure 4 

would likely occur from the non-operational forces. Our model estimate is in sync with this 

notion of vertical movement between the operational and non-operational demands—

vertical movement in a sense that our demand for the operational rises while the demand 

for the non-operational forces falls.  

Provided that DMDC is merged with the BUPERS data we used to model our Pssp 

and data we used to calculate our vector, r, is a close representation of a true NC population, 
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we are comfortable with our approach to forecast both the operational and the accession 

target goals. 

B. ASSESSMENT OF THE MODEL AND RECOMMENDATIONS FOR 
FUTURE WORK 

We build our transition matrix, Pssp, to incorporate all three subspecialties 1, 2, and 

3 held by an NC. However, per Navy Subspecialty System OPNAVINST 1523, Part B 

(Office of the Chief of Naval Operations, 2015). Subspecialty 3 could require a lengthy 

refresher training before the NC is treated as operationally ready—perhaps as long as the 

lengthy training undertaken by new graduates, whom we exclude from the operational 

readiness inventory. Therefore, it may be wise to exclude Subspecialty 3 while building 

the Pssp to accurately represent current operational readiness inventories. 

Furthermore, in the absence of an accurate number for both the total E/S target and 

specific E/S targets for operational and non-operational forces, our prediction is not 

expected to provide accurate estimates of the operational forces and accession goals, as our 

estimates are based on a fixed distributional ratio of operational and non-operational forces 

from year to year. This nature of fixed distribution is unlikely in the real world of operation. 

However, the model does provide flexibility to adjust all the applicable constraints.  

Recommendations for future research include studying at least two other behaviors 

of the NC system using same data: (1) build a model to analyze policies or programs from 

the point of start to their wastage, i.e., absorbing states—for example, examining the 

effectiveness of NC Accession Training Programs by assessing NCs’ likelihood of 

completing school and eventually getting commissioned, then either retiring or attriting; 

and (2) provide sufficient data that captures enough observations for each subspecialty, 

build a model to study each subspecialty level, which would allow forecasting operational 

forces by specific SSPs. 

In addition, during a discussion with the senior NC Manpower practitioners, it was 

made clear that the DMDC data differs from the BUMIS data. BUMIS data could be used 

to analyze and compare with this work. This data is managed by BUMED and could 

therefore more accurately represent the characteristics of the NC community. 
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The adjustable Markov models that we developed in this thesis provide the Navy 

NC a Manpower Planning tool that can enhance manpower planning and resource 

allocation under uncertainty.  
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